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Matrix Models in Structured Population Dynamics and
the Fundamental Bifurcation Theorem when the

Projection Matrix is Imprimitive

JIM M. CUSHING

Department of Mathematics, University of Arizona
617 N Santa Rita, Tucson, AZ 85721, USA

cushing@math.arizona.edu

In population biology, the discrete time dynamics of structured populations are described
by systems of difference equations, which when written in vector form are called matrix
models. The vector of state variablesx is iterated forward in time by the multiplication
of a projection matrixP (x). This matrix encodes the modeling assumptions about basic
vital rates (birth, death, etc.) and state transitions (young to old, juvenile to adult, large to
small, etc.) and how they depend on the state variable (through so-called density effects).
The resulting nonlinear mapx(t + 1) = P (x(t))x(t) has fixed pointx = 0. Since
extinction-versus-persistence is a basic concern in population biology, the stability ofx =
0 is of fundamental importance. The linearization principle implies stability/instability of
x = 0 can be determined by the eigenvalues of the Jacobian evaluated atx = 0, which
is justP (0). GenerallyP is primitive and, as a result, stability ofx = 0 is determined
by the (strictly) dominant eigenvaluer (the spectral radius) ofP (0). The nature of the
bifurcation that occurs atr = 1 is, in this case, well understood: a global continuum of
positive equilibria bifurcates fromx = 0 at r = 1, which near the bifurcation point is
stable if the bifurcation is forward and which is unstable if it is backwards. Backward
bifurcations are of interest in one important way: they generally give rise to an interval
of r < 1 values on which a strong Allee effect occurs and to a tipping pointr∗ < 1
below which a sudden population crash occurs (through a blue-sky bifurcation). There
are, however, applications which give rise to matrix models with imprimitive projection
matricesP . WhenP is imprimitive the bifurcation atr = 1 is more complicated and,
in general, is not well understood. I will describe some example cases and some new
theorems concerning the bifurcation atr = 1. These models and theorems are motivated
by field observations of my ecologist collaborators working on Protection Island National
Wildlife Refuge in the state of Washington. Our project concerns the effects of climate
change on marine birds nesting on the Island and the prospect for their future survival
in lieu of increasing mean sea surface temperature. Since adaptation is important in this
regard, I will also describe an evolutionary version of matrix models and the form that the
fundamental bifurcation theorem takes for the resulting “Darwinian” models.
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Global Dynamics of Difference Equations:
Applications to Population Dynamics

SABER ELAYDI

Trinity University
San Antonio, Texas, USA

selaydi@trinity.edu

In this talk we will present the latest development in the global dynamics of two types
of systems generated by triangular maps and monotone maps. The dynamics of planar
monotone maps have been well understood through the work of Hal Smith. The theory
of monotone maps is now extended to higher dimensional maps via geometrical interpre-
tation of monotonicity. Another class of maps for which the Global dynamics have been
successfully established, is the class of triangular maps where the Jacobian matrix of the
map is triangular. Applications of our theory to population biology will be presented. For
instance, hierarchical models may be represented by triangular maps defined onRk

+. In
particular, we focus our attention on models with the Allee effect. The general theory
of the global dynamics of triangular maps was established by Balreira, E., and Luis [1].
Here we extend these results to include the difficult case of non-hyperbolic maps, building
upon the work by Assas et al. [2,3]. We show that in the case of non-hyperbolic maps,
the center manifold is semi-stable from above. Finally, we show how immigration to one
of the species or to both would change drastically the dynamics of the system. It is shown
that if the level of immigration to one or both species is above a specified level, then there
will be no extinction region.

References

[1] F. C. Balreira, S. Elaydi and R. Luis,Global dynamics of triangular maps, Nonlinear
Anal. TMA Ser. A 104 (2014) 75–83.

[2] L. Assas, S. Elaydi, E. Kwessi, G. Livadiotis and D. Ribble,Hierarchical competition
models with the Allee effect, J. Biol. Dyn. 9, Suppl. 1 (2015) 32–44.

[3] L. Assas, S. Elaydi, E. Kwessi, G. Livadiotis and B. Dennis,Hierarchical competition
models with the Allee effect II: the case of immigration, J. Biol. Dyn. 9 (2015) 288–
316.
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Topological Computation Theory for the Global
Dynamics of Multi-Parameter Systems

HIROSHI KOKUBU

Department of Mathematics, Kyoto University
Kyoto 606-8502, Japan

kokubu@math.kyoto-u.ac.jp

The fundamental theorem of dynamical systems due to C. Conley asserts that the compli-
ment of the chain-recurrent set in the phase space is gradient-like for any finite-dimensional
dynamical systems. In general, the chain-recurrent set, which is the weakest notion of
recurrence in dynamics, has infinitely many component, and thus, it is hard to exactly
capture it. Together with my collaborators, I have been working on developing a compu-
tational method, combined with several topological ideas, for obtaining a slightly weaker
form of the “recurrent vs gradient-like decomposition” of the phase space, called the
Morse decomposition of the global dynamics of multi-parameter systems. In this talk, I
will explain the basic ideas of these topological computation methods, and discuss some
applications and extensions.

References

[1] Zin Arai, William Kalies, Hiroshi Kokubu, Konstantin Mischaikow, Hiroe Oka and
Paweł Pilarczyk,A database schema for the analysis of global dynamics of multipa-
rameter systems, SIAM J. Appl. Dyn. Syst. 8 (2009) 757–789.

[2] Justin Bush, Marcio Gameiro, Shaun Harker, Hiroshi Kokubu, Konstantin Mis-
chaikow, Ippei Obayashi and Pawel Pilarczyk,Combinatorial-topological framework
for the analysis of global dynamics, Chaos 22 (2012) 047508.

[3] Hiroshi Kokubu and Hiroe Oka,A topological computation approach to the interior
crisis bifurcation, Nonlinear Theory and its Applications IEICE 4 (2013) 97–103.

[4] Shaun Harker, Hiroshi Kokubu, Konstantin Mischaikow and Paweł Pilarczyk,Induc-
ing a map on homology from a correspondence, Proc. Amer. Math. Soc. 144 (2016)
1787–1801.
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Bifurcations in nonlinear Leslie matrix models

RYUSUKE KON

Faculty of Engineering, University of Miyazaki
Gakuen Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan

konr@cc.miyazaki-u.ac.jp

This talk considers the dynamics of the following system of nonlinear difference equations

u1,k+1 = f1ϕ1(uk)u1,k + f2ϕ2(uk)u2,k + · · ·+ fnϕn(uk)un,k

u2,k+1 = s1σ1(uk)u1,k

u3,k+1 = s2σ2(uk)u2,k

...

un,k+1 = sn−1σn−1(uk)un−1,k, uk = (u1,k, u2,k, . . . , un,k)
⊤,

which is a nonlinear Leslie matrix model withn (≥ 2) age-classes. The variableui,k

denotes the number of individuals of agei ∈ {1, 2, . . . , n} at time k ∈ {1, 2, . . . , }.
Since the nonlinear Leslie matrix model exhibits complicated behavior even ifn = 2
[1], we focus on the bifurcation of the population-free equilibrium pointu = 0 and
show that the bifurcation problem can be seen as the stability problem for Lotka-Volterra
differential equations if the population is semelparous (i.e.,f1 = f2 = · · · = fn−1 = 0).
Furthermore, we extend this result to both iteroparous and multi-species cases. The study
gives a mathematical base to [4] and rediscovers some results in [2, 3]

References

[1] J. Guckenheimer, G. Oster and A. Ipaktchi,The dynamics of density dependent pop-
ulation models, J. Math. Biol. 4 (1977) 101–147.

[2] J. M. Cushing,Three stage semelparous Leslie models, J. Math. Biol. 59 (2009) 75–
104.

[3] J. M. Cushing and S. M. Henson,Stable bifurcations in semelparous Leslie models,
J. Biol. Dyn. 6 (2012) 80–102.

[4] R. Kon, Age-structured Lotka-Volterra equations for multiple semelparous popula-
tions, SIAM J. Appl. Math. 71 (2011) 694–713.
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Complexity in discrete-time seasonal population models
with harvesting

EDUARDO L IZ

Departamento de Mateḿatica Aplicada II, Universidad de Vigo
Campus Universitario, 36310 Vigo, Spain

eliz@dma.uvigo.es

Population dynamics of many species are influenced by seasonality, and seasonal inter-
actions have the potential to modify important factors such as population abundance and
population stability [4]. We consider a discrete semelparous population model with an
annual cycle divided into a breeding and a non-breeding season, and introduce harvesting
into the model following [1]. We report some interesting phenomena such as conditional
and non-smooth hydra effects, coexistence of two nontrivial attractors, and hysteresis.
Our results highlight the importance of several often underestimated issues that are cru-
cial for management, such as census timing and intervention time.

Finally, we analyze the interaction of sequential density dependence with other factors
that affect individual fitness: carry-over effects [2] and mating limitations leading to Allee
effects [5].

References

[1] N. Jonźen and P. Lundberg,Temporally structured density dependence and population
managementAnn. Zool. Fennici 36 (1999) 39–44.

[2] E. Liz and A Ruiz-Herrera,Potential impact of carry-over effects in the dynamics and
management of seasonal populations, PLoS One 11 (2016) e0155579.

[3] E. Liz, Population responses to harvesting in a discrete model of sequential density
dependence, Preprint (2016).

[4] I. I. Ratikainen et al.,When density dependence is not instantaneous: theoretical
developments and management implications, Ecol. Lett. 11 (2008) 184–198.

[5] S. J. Schreiber,Allee effects, extinctions, and chaotic transients in simple population
models, Theor. Popul. Biol. 64 (2003) 201–209.
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Numerical dynamics of integrodifference equations

CHRISTIAN PÖTZSCHE

Institut für Mathematik, Alpen-Adria Universität Klagenfurt
Universiẗatsstraße 65–67, 9020 Klagenfurt, Austria

christian.poetzsche@aau.at

Integrodifference equations (IDEs for short) are a popular tool in theoretical ecology to
describe the spatial dispersal of populations with nonoverlapping generations (cf. [1]).

From a mathematical perspective, IDEs are recursions on ambient spaces of contin-
uous or integrable functions and therefore generate an infinite-dimensional dynamical
system. Hence, for simulation purposes an appropriate numerical approximation yielding
a finite-dimensional state space is due. Our goal is to study those dynamical properties
of IDEs (e.g. existence of reference solutions, attractors, invariant manifolds) which are
preserved under corresponding numerical methods and to establish convergence for in-
creasingly more accurate schemes.

References

[1] M. Kot and W. Schaefer,Discrete-time growth-dispersal models, Math. Biosci. 80
(1986) 109–136.

[2] A. Stuart and A. Humphries, Dynamical Systems and Numerical Analysis, Mono-
graphs on Applied and Computational Mathematics, University Press, Cambridge,
1998.
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Population Persistence and Species Coexistence in
Random Environments

SEBASTIAN J. SCHREIBER

Department of Evolution and Ecology, University of California
Davis, CA 95616, USA
sschreiber@ucdavis.edu

Stochastic fluctuations in temperature, precipitation and a host of other environmental
factors occur at multiple spatial and temporal scales. As the survival and reproduction of
organisms, whether they be plants, animals, or viruses, depend on these environmental
factors, these stochastic fluctuations often drive fluctuations in population abundances.
This simple observation leads to a fundamental question in population biology. Namely,
under what conditions do stochastic environmental fluctuations hinder or facilitate the
maintenance of biodiversity? This question is particularly pressing in light of global cli-
mate models predicting increasing temporal variation in many climatic variables over the
next century.

One fruitful approach to tackling this question from population biology is the de-
velopment and analysis of models accounting for nonlinear feedbacks among species,
population structure, and environmental stochasticity. In this talk, I will discuss progress
in the development of a mathematical theory for stochastic coexistence where the dynam-
ics of the interacting species are encoded by random difference equations and coexistence
corresponds to the limit points of empirical measures being bounded away from an extinc-
tion set. I will illustrate the theory with empirical based examples involving checkerspot
butterflies, Kansas prairies, and coastal dunes.
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Evolutionary games on graphs and discrete dynamical
systems

JEREMIAS EPPERLEIN, STEFAN SIEGMUND

Center for Dynamics & Institute for Analysis, Dept. of Mathematics
Technische Universität Dresden, 01062, Germany

jeremias.epperlein@tu-dresden.de, stefan.siegmund@tu-dresden.de

PETR STEHLÍK ∗

Dept. of Mathematics and NTIS, University of West Bohemia
Univerzitni 8, 30614 Pilsen, Czech Republic

pstehlik@kma.zcu.cz

Evolutionary games on graphs play an important role in the study of evolution of coop-
eration in applied biology. In this talk we discuss these discrete dynamical systems from
the mathematical point of view in the deterministic case. We focus on coexistence equi-
libria, attractors, update rules and update orders. For example, we use constructive proofs
to show that for all graphs there exist coexistence equilibria for certain game-theoretical
parameters. Similarly, for all relevant game-theoretical parameters there exists a graph
yielding coexistence equilibria. We conclude with a list of open problems.

References

[1] C. Hauert and M. Doebeli,Spatial structure often inhibits the evolution of cooperation
in the snowdrift game, Nature 428 (2004) 643–646.

[2] M. A. Nowak, Five rules for the evolution of cooperation, Science 314 (2006) 1560–
1563.

[3] J. Epperlein, S. Siegmund and P. Stehlı́k, Evolutionary games on graphs and discrete
dynamical systems, J. Difference Equ. Appl. 21 (2015) 72–95.

[4] J. Epperlein, S. Siegmund, P. Stehlı́k and V. Šv́ıgler, Coexistence equilibria of evo-
lutionary games on graphs under deterministic imitation dynamics, Discrete Contin.
Dyn. Syst. Ser. B. 21 (2016) 803–813.
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Some problems on the global attractivity of linear
nonautonomous difference equations

JIANSHE YU

Guangzhou University
Guangzhou, 510006, P. R. China

jsyu@gzhu.net.cn

Main aim of this talk is to solve several problems on the global attractivity of the zero
solution of the nonautonomous difference equation

xn+1 − xn + Pnxn−kn = 0, n ∈ Z(0),

where{Pn} is a sequence of nonnegative real numbers,{kn} is a sequence of nonnegative
integers withn − kn → ∞ asn → ∞. Some open problems are posed on the global
attractivity of equilibrium 1 for the discrete population model.
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Regularity of C1 Linearization

WEINIAN ZHANG

School of Mathematics, Sichuan University
Chengdu, Sichuan 610064, P. R. China

matzwn@126.com

C1 linearization is of special interests because it can distinguish characteristic directions
of dynamical systems. In this talk new advances on sharp regularity ofC1 linearization
for planar hyperbolic diffeomorphisms are introduced. Moreover, results are given in the
higher dimensional Euclinean space and Banach spaces in nonresonant cases and resonant
cases. Those results are obtained jointly with Wenmeng Zhang and Witold Jarczyk.

References

[1] W. M. Zhang and Weinian Zhang,C1 linearization for planar contractions, J. Funct.
Anal. 260 (2011) 2043–2063.

[2] W. M. Zhang, Weinian Zhang and W. Jarczyk,Sharp regularity of linearization for
C1,1 hyperbolic diffeomorphisms, Math. Ann. 358 (2014) 69–113.

[3] W. M. Zhang and Weinian Zhang,Sharpness forC1 linearization of planar hyper-
bolic diffeomorphisms, J. Differential Equations 257 (2014) 4470–4502.

[4] W. M. Zhang and Weinian Zhang,α-Hölder linearization of hyperbolic diffeomor-
phisms with resonance, Ergodic Theory Dynam. Systems 36 (2016) 310–334.
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On Nonoscillatory Solutions of Two Dimensional
Nonlinear Delay Time-Scale Systems

ELVAN AKIN ∗

Department of Mathematics and Statistics, Missouri S&T
Rolla, MO USA
akine@mst.edu

ÖZKAN ÖZTÜRK

Department of Mathematics and Statistics, Missouri S&T
Rolla, MO USA
oo976@mst.edu

In this talk, we consider nonlinear two dimensional systems of first order delay dynamic
equations on time scales and obtain necessary and sufficient conditions to show the ex-
istence of nonoscillatory solutions. Our approach is based on the sign of components of
solutions and we use Knaster and Schauder fixed point theorems. Examples will be given
to illustrate some of our results as well.

References

[1] D. R. Anderson,Oscillation and nonoscillation criteria for two-dimensional time-
scale systems of first order nonlinear dynamic equations, Electronic Journal of Dif-
ferential Equations, Vol. 2009 (2009), No. 24, pp.1–13.

[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction
with Applications, Birkḧauser, Boston, 2001.

[3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,
Birkhäuser, Boston, 2003.

[4] Ö. Öztürk, E. Akın,Nonoscillation criteria for two dimensional time scale systems,
Nonauton. Dyn. Syst. 2016: 3: 1–13.

[5] X. Zhang,Nonoscillation criteria for nonlinear delay dynamic systems on time scales,
International Journal of Mathematical, Computational, Natural and Physical Engi-
neering Vol:8, No:1, 2014.
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A prey-predator model with refuge and toxic effect
in prey

ZIYAD ALSHARAWI

Department of Mathematics and Statistics, American University of Sharjah
Sharjah, United Arab Emirates

zsharawi@aus.edu

(Collaborative work with Joydev Chattopadhyay, Indian Statistical Institute)

In this talk, we discuss the dynamics of a prey-predator model with both refuge and toxic
effects of prey. In particular, we consider the discrete model

xn+1 =
krxn

k + (r − 1)xn

− βαxnyn

yn+1 = (cβα− θ)xnyn − µyn,

wherer is the intrinsic growth rate of the toxic prey(r > 1), k is the carrying capacity
of the prey(k > 0), β is the predation rate(0 < β < 1), c is the conversion efficiency
(0 < c < 1), α is the portion of the prey population that does not take refuge(0 ≤ α ≤ 1),
µ is the natural mortality rate of the predator population (0 < µ < 1) andθ is the toxic
effect due to consumption of toxin producing prey(0 ≤ θ < 1).

We analyze stability of equilibrium solutions, and show that the predator free equi-
librium is globally asymptotically stable if the prey density is below a threshold level.
Boundedness, persistence and permanence of the system will be characterized. We show
that the system undergoes Neimark-Sacker bifurcation. Also, we show that increasing the
carrying capacity of the prey reduces the chance of coexistence of both populations. Thus
large carrying capacity leads to the paradox of enrichment.
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The author investigates the local and global stability character and the periodic nature of
solutions of some second order rational difference equations with a positive real power in
the form:

xn+1 =
α+ βxk

n + γxk
n−1

A+Bxk
n + Cxk

n−1

, n = 0, 1, 2, .., (1)

with non-negative parametersα, β, γ, A,B,C and arbitrary non-negative initial condi-
tionsx−1, x0 such that the denominator is always positive, andk ∈ (0,∞).

The boundedness character of solutions of Eq.(1) have been studied in paper [1]; fur-
thermore, there are given several open problems and conjectures about Eq.(1). In this talk
the author would like to consider some of them.
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I will show that the planar Leslie-Gower model has a globally attracting invariant man-
ifold that is either convex, concave, or a line segement [1]. My apporach is based upon
establishing when a given line segment is mapped to a convex or concave curve. I will
also show the existence of convex and concave globally attracting invariant manifolds for
the 3-species Leslie-Gower model. To do this I will first relate the Leslie-Gower model
to a Kolmogorov differential equation. Convexity is then obtained by showing that all
planes whose normals lie in a suitable invariant cone are mapped to convex surfaces [2].
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Invariants for a class of discrete dynamical systems given
by rational mappings
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An invariant or first integral of a discrete dynamical systemx(k + 1) = F (x(k)) with
domainD is a non constant mapH : U ⊂ Kn → K defined in an open and dense subset
U of D such that for allx ∈ U it holdsH(F (x)) = H(x).

In this work, we study the existence of invariants for a family of rational dynamical
systems. Explicitly, letK denote eitherR or C. We consider the discrete dynamical
systems in an open domainD of Kn of the form

x(k + 1) = F (x(k)) = (F1(x(k)), . . . , Fn(x(k))), x(k) ∈ D ⊂ Kn (1)

where the functionsFi : D ⊂ Kn → K are linear fractionals sharing denominator:

Fi(x) =
ai1x1 + ai2x2 + · · ·+ ainxn + ci
b1x1 + b2x2 + · · ·+ bnxn + d

, i = 1, 2, . . . , n,

for x = (x1, x2, · · · , xn) and all involved parameters inK. Such systems can be written
with the aid of homogeneous coordinates as the composition of a linear map inKn+1 with
a certain projection and their behaviour is strongly determined by the spectral properties
of the corresponding linear map.

We will prove that ifn ≥ 2 then every system of this kind admits an invariant, both in
the real and in the complex case. More precisely, our main result will be

Theorem 1. Considern > 1. If the dynamical system given by (1) is defined in a
nonempty open setD, then it admits an invariant defined in an open and dense subset

U = {x ∈ D : Q(x) ̸= 0},

whereQ(x) is a polynomial of degree 2 defined by a couple of (not necessarily distinct)
eigenvectorsu1, u2 of a matrix defined by the coefficients of the components ofF .

In fact, for a sufficiently largen several functionally independent invariants can be
obtained and, in many cases, the invariant can be chosen as the quotient of two quadratic
polynomials. In this cases one has, as a consequence, that every orbit of the system results
to be contained in a certainF -invariant quadric.

References

[1] I. Bajo, Invariants for certain discrete dynamical systems given by rational mappings,
Qual. Theory Dyn. Sys. (2016), DOI 10.1007/s12346-016-0201-4, 24 pp.

17



Stabilisation of difference equations with noisy
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Prediction-based control was introduced by Ushio and Yamamoto [2] as a method of
stabilising unstable periodic orbits of difference equations. In this talk, we consider the
influence of stochastic perturbations on stability of a unique positive equilibrium of a
difference equation subject to prediction-based control. These stochastic perturbations
may be multiplicative if they arise from stochastic variation of the control parameter,
or additive if they reflect the presence of systemic noise. The class of equations under
consideration includes common population models like the Ricker model, the truncated
logistic model, and modifications of the Beverly-Holt equation.

We begin by relaxing the control parameter in the deterministic equation, and de-
riving a range of values for the parameter over which all solutions eventually enter an
invariant interval. Then, by allowing the variation to be stochastic, we demonstrate suf-
ficient conditions (less restrictive than known ones for the unperturbed equation) under
which the positive equilibrium will be globally a.s. asymptotically stable: i.e. the pres-
ence of noise improves the known effectiveness of prediction-based control. Finally, we
show that systemic noise has a “blurring” effect on the positive equilibrium, which can be
made arbitrarily small by controlling the noise intensity.

The results presented in this talk will be illustrated by numerical examples, and are
published in [1].
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In [1] a difference equationxn+1 = βxn − g(xn), n = 0, 1, 2, . . . , was analyzed as a
single neuron model, whereβ > 0 is an internal decay rate and a signal functiong is the
following piecewise constant function with McCulloch-Pitts nonlinearity:

g(x) =

{
1, x ≥ 0,

−1, x < 0.
(1)

Now we will study the following non-autonomous piecewise linear difference equation:

xn+1 = βnxn − g(xn), n = 0, 1, 2, . . . ,

where(βn)
∞
n=0 is a period two or three sequence

βn =

{
β0, if n = 2k,

β1, if n = 2k + 1,
or βn =


β0, if n = 3k,

β1, if n = 3k + 1,

β2, if n = 3k + 2,

k = 0, 1, 2, . . .

andg is in form (1). In [2] we have been studied this model where(βn)
∞
n=0 is a period two

sequence. We will investigate the periodic behaviour and stability of solutions relative to
the periodic internal decay rate.
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Eigenvalue estimates for the Sturm-Liouville equation
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Recently, the discrete Hamiltonian systems have wide attracted attention. An interesting
model is the discrete Sturm-Liouville equation of the form

(Jn +Qq) y = λy

whereQq is a diagonal matrix with diagonal elementsq1, q2, . . . , qn andJn is then × n
tridiagonal matrix of the form

Jn =


2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
.. . . . . . . . −1

0 · · · 0 −1 2

 .

From the theory of Jacobi matrices, we know that the eigenvalues of the discrete Sturm-
Liouville operatorJn + Qq are all real and simple. In particular, most of studies are
focus on the eigenvalue estimates, bound of eigenvalues and inverse spectral problem.
The purpose of this talk is to introduce the problem of the gap of first two eigenvalues of
the discrete Sturm-Liouville equation. We will find the optimal lower bound of the first
eigenvalues gap and show the optimizer of the first eigenvalues gap is only whenQq is a
constant times the identity matrix.
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Iterated Function Systems and Attractors
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Let X be a compact metric space withS = {S1, . . . , Sm} a finite set of continuous maps
from X to itself. Call a non-empty compact subsetF of X anattractor (or invariant set)
for the iterated function system (IFS)S if F = ∪m

i=1Si(F ). We investigate the structure
(geometry, Hausdorff dimension, etc...) of the invariant sets according to the properties of
the functions in the generating systems. In particular, we focus our attention on the case
whenX = [0, 1]n, n ≥ 1.
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Consider the functional difference equation

∆(an|∆xn|αsgn(∆xn)) = λF (n, xn+q), (1)

whereλ > 0 is a real parameter,α > 0, q ∈ {0, 1, 2}.
Some nonlocal boundary value problems, associated to (1) on unbounded domains,

are studied by means of a new approach. Their solvability is obtained by using properties
of the recessive solution to suitable half-linear difference equations, a half-linearization
technique and a fixed point theorem in Fréchet spaces. The result is applied to derive the
existence of nonoscillatory solutions with initial and final data.
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difference equations, J. Math. Anal. Appl. 302 (2005) 1–13.
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Cellular automata are discrete dynamical systems that are used to model a wide variety
of phenomena in biology, computer science, traffic simulation, etc. They are are also of
interest from a purely mathematical point of view.

Since CA can be characterized as the continuous shift-commuting self-maps of sub-
shifts, topological dynamics provides a natural framework for their investigation. Starting
with the fundamental work [1] of Hedlund, this line of research proved to be very fruitful
yielding nice results and even more intriguing open problems (see for example [2]).

We will review some of these questions and results and present some new ones con-
cerning topological conjugacies between cellular automata.
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NATÁLIA MARTINS

Center for Research and Development in Mathematics and Applications
Department of Mathematics, University of Aveiro

3810-193 Aveiro, Portugal
natalia@ua.pt

We shall present results concerning two special cases of the following model:{
x∆
i (t) = vi(t)

v∆i (t) = Av(t)
(1)

for i = 1, ..., N , wheret ∈ T being an isolated time scale. The evolution of agenti is
described byt 7→ (xi(t), vi(t)) ∈ E2, whereE a finite dimensional inner product real
space. For eacht, xi(t) represents thestateandvi(t) its consensus parameterat timet.
Matrix A = (aij)

N
i,j=1 with aij ∈ R, quantifies the way the agents influence each other,f∆

denotes the∆−derivative off . It is of interest to know whether the system will converge
to a consensus pattern, characterized by the fact that all the consensus parameter tend to
a common value.

This work is supported by the Polish National Science Center grant on the basis of decision DEC-
2014/15/B/ST7/05270.
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The purpose of this talk is to present the Cucker-Smale model on isolated time scales.
This dynamical system models a consensus of emergence in a population of autonomous
agents. The results establishing conditions under which such consensus occurs will be
presented. We will present analytical methods as well as computer simulations.

The work was supported by Polish founds of National Science Center, granted on the basis of decision
DEC-2014/15/B/ST7/05270.
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It is found that every solution of a system of linear delay difference equations has fi-
nite limit at infinity if some conditions are satisfied. These conditions are much weaker
than the known sufficient conditions for asymptotic constancy of the solutions. When we
impose some positivity assumptions on the coefficient matrices, our conditions are also
necessary. The novelty of our results is illustrated by examples. This is a joint work with
Lászĺo Horváth (University of Pannonia, Hungary).
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A model for the attrition of combat power is treated with some mathematical discrete
combat model. In this talk, we consider a sufficient condition for the asymptotic stability
of a discrete combat model, which appears as a model for a government army vs an anti-
government army of guerrilla, a government army vs a terror army of guerrilla and an
anti-government army of guerrilla vs a terror army of guerrilla, respectively, by applying
the technique of a luxury Liapunov functional.
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A tractable overlapping-generations model with asset bubbles is presented to demonstrate
that a financial crisis with the bursting of asset bubbles decreases economic growth rates
and increases unemployment rates. In our model, without asset bubbles, all agents en-
gage in capital production regardless of their idiosyncratic productivity shocks. A bubbly
asset, which is intrinsically useless, has a positive market value because selling the as-
set is a fund-raising method for agents who draw sufficiently high productivity to initiate
an investment project and purchasing the asset is a sole saving method for agents who
draw too low productivity. The presence of asset bubbles corrects allocative inefficiency,
relocating investment resources from low productive agents to high productive agents.
Accordingly, the presence of asset bubbles promotes economic growth and reduces un-
employment rates. However, extrinsic uncertainty bursts asset bubbles and causes a self-
fulfilling financial crisis. High unemployment rates follow a self-fulfilling financial crisis.
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We show a result on convergence of a consistent finite difference scheme to solve the
Cauchy problem, including the ill-posed cases, of the following form:

∂ui

∂t
=

m∑
j=1

n∑
l=1

aijl(t, x, u)
∂uj

∂xl

+ fi(t, x, u), ui(0, x) = gi(x) (i = 1, . . . ,m). (1)

We suppose analyticity with respect tox = (x1, . . . , xn) andu = (u1, . . . , um) of the
data (aijl, fi, gi) and merely continuity with respect tot, as in the Nirenberg-Nishida
theorem. For the linear case, we already have a similar result [1]. Our proof is based
on a discrete version of the proof given in [2], and our result is realized numerically on
multiple-precision arithmetic environments, such asexflib[3].
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In this paper, we study the optimal growth model in which consumption habits enter the
utility function multiplicatively, and characterize the necessary and sufficient conditions
that the optimal path must satisfy. The utility function with multiplicative habits is not
concave and most of the existing theorems on the optimal control problems cannot be
directly applicable to the model. To obtain the equilibrium conditions, we re-express the
optimization problem in terms of the logarithm of the consumption and that of the habit
stock so that the new optimization problem is concave and the Lagrangian is available.
We then use these conditions to prove that the steady state growth path always exists. We
also study the stability of the optimal growth path out of the steady state.
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The purpose of this talk is to present the relation between the Jacobs-de Leeuw-Glicksberg
decomposition of semigroups and the spectral decomposition of the Markov operators
which are induced by stochastic difference equations. Recently we proved new results
about both decomposition. In this talk, we shall show the relation between both results.
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In this talk, we are concerned with the existence and stability of traveling wave solutions
for the following partial difference equation

ui(n+ 1) = (1− h)ui(n) + h
d∑

l=0

αlf(ui−l(n− κl)) + h
d∑

l=0

βlf(ui−l(n− κ̂l)), (1)

wherei, n ∈ Z, h > 0, αl, βl ∈ R, d, κl, κ̂l are nonnegative integer andf is defined by

f(x) =
1

2
(|x+ 1| − |x− 1|).

This partial difference equation can be regarded as a discrete-time model of delayed cel-
lular neural networks. Using the method of step along with positive characteristic roots of
the equations, we successfully prove the existence of traveling wave solutions. Moreover,
we also show that all such solutions are unstable. Additionally, we provide some numer-
ical results to support our results, and point out the different structures of traveling wave
solutions between the continuous-time and discrete-time models.
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We are interested in finding entire solutions of a bistable periodic lattice dynamical sys-
tem. By constructing appropriate super- and subsolutions of the system, we establish two
different types of merging-front entire solutions. The first type can be characterized by
two monostable fronts merging and converging to a single bistable front; while the second
type is a solution which behaves as a monostable front merging with a bistable front and
one chases another from the same side ofx-axis.
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In theoretical ecology, a well known difference equation describing closed single species
populations that reproduce synchronously at discrete time intervals is the following equa-
tion

x(t+ 1) = x(t)g(x(t)), (1)

wherex(t) is the population size at generationt. The per capita growth rateg(x(t)) is of
Allee effect type (that is, a decrease in population growth at low population sizes). We
study the Allee effect in generating multiple attractors. We also give an application to a
diffusive logistic equation with predation of Holling type II functional response.
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In this talk, for a given algebraic recurrence relation

P (an, an+1, . . . , an+k−1) = 0, (1)

on a real numerical sequence{an}, whereP (x0, . . . , xk−1) is a polynomial ofk variables,
we present algorithms to obtain general terms of{an} as formal series. As an application,
we investigate a recurrence relation

an+2 =
an

1 + an+1

, a0 > 0, a1 > 0, (2)

and determine the setD = {(a0, a1) ∈ R2
+ | lim

n→∞
an = 0}, which is proven non-empty

in [1].
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Difference equation and the related Schr̈odinger operator
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This talk is based on the joint work with Professors Kazuhiro Ishige of Tohoku University
and El Maati Ouhabaz of Université de Bordeaux.

We consider the difference equation of the form

un+1 + un−1 − 2un

h2
+

(N − 1)(un+1 − un)

nh2
+ V (nh)un = 0,

whereN ≥ 2 is a fixed natural number,n ∈ N, h > 0, andV is a given function. For
suitably givenu0 andu1, we discuss the behavior ofun asn → ∞. Also, as a limit
h → 0, we discuss properties of radial solutions to−∆u+ V (|x|)u = 0.
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The aim of this talk is to present some uniqueness theorems for discrete Sturm-Liouville
equation

−∆2y(n) + q(n)y(n+ 1) = λy(n+ 1), n ∈ Z, (1)

and Dirichlet boundary condition

y(0) = y(N + 1) = 0 (2)

by using the spectrum ( collection of eigenvalues), where the sequenceq = [q(n)]n∈Z is
referred to as the potential. As usual,∆ is the forward difference operator defined by

∆y(n) = y(n+ 1)− y(n), ∆2y(n) = y(n+ 2)− 2y(n+ 1) + y(n).

It is well known that the problem (1), (2) hasN simple real eigenvalues with correspond-
ing orthogonal eigenfunctions. By using the weighted numbers and eigenvalues, we will
prove some uniqueness theorems analogue of continuous Sturm-Liouville problems.
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The purpose of this talk is to present the behabior of the error in classical iterative method,
Jacobi, Gauss-Siedel and SOR, for solving a partial differential equations. The coefficient
matrix given by using difference approximation is very simple. This problem is a just right
problem to check the property of the classical method.
We consider the partial differential equation.

∂2u

∂x2
+

∂2u

∂x2
= f(x, y), x, y ∈ Ω (1)

The continuous partial differential equation (PDE) is replaced with a discrete approxima-
tion [1]. So, we have a linear systemAx = b. It is easy to solve this coefficient matrix
with symmetry. I inspect the differences to approximate and true values. As the order of
matrix becomes large, the number of iteration increases. From a numerical examples, we
use some preconditioning method [2, 3] to reduce the number of iteration, but we found
an error increasing.
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Recently, many people have investigated rational difference equations with non-linear
terms, see [1, 2, 3] for several examples. We give the boundedness character, local and
global stability of solutions of the following second-order rational difference equation
with quadratic denominator,

xn+1 =
α + γxn−1

Bxn +Dxnxn−1 + xn−1

for n = 0, 1, . . . ,

where the coefficients are positive numbers, and the initial conditionsx−1 andx0 are
nonnegative numbers such that the denominator is nonzero. In particular, we show that in
a certain region, the unique equilibrium is globally asymptotically stable, while in another
region, the equilibrium is a saddle and there exist prime period-two solutions.
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A new method for finding first integrals of delay differential equations is presented. It can
be used for delay differential equations which do not possess a variational (Lagrangian)
formulation. The method is based on a newly established identity which links symmetries
of the underlying delay differential equations, solutions of the adjoint equations and first
integrals. The method can be considered as a generalization of the previous research
concerning with first integrals of differential and discrete equations. If a sufficient number
of first integrals can be obtained, it is possible to find the general solution of the delay
differential equations.
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The purpose of this talk is to present some results of studying the nonlinear neutral differ-
ence system

∆(xn + pnxn−σ) = An f1 (yn)

∆yn = Bn f2 (zn)

∆zn = Cn f3 (wn)

∆wn = Dn f4 (xγn) ,

(S)

wheren ∈ N0 = {n0, n0 + 1, . . .}, n0 is a positive integer,σ is a nonnegative integer,
{An} , {Bn} , {Cn} , {Dn} are positive real sequences defined forn ∈ N0. ∆ is the for-
ward difference operator given by∆xn = xn+1 − xn. The sequenceγ : N → N satisfies

lim
n→∞

γn = ∞.

The sequence{pn} is a sequence of the real numbers and it satisfies0 ≤ pn < 1. Func-
tionsfi : R → R for i = 1, . . . , 4 satisfy

fi(u)

u
≥ 1, u ∈ R\{0}.

We study nonoscillatory solutions of (S) and we state asymptotic properties of solu-
tions which lead to establishing sufficient conditions for the system to have weak property
B and property B.
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We study topological properties of Brouwer flows, i.e. flows of the plane which have no
fixed points. For each Brouwer flow we have a decomposition of the plane into paralle-
lizable regions with the transition maps between parallelizing homeomorphisms of these
regions. We divide the set of all Brouwer flows into classes by the relation of topological
equivalence of flows and for each of these classes we take a common index set for the
considered decompositions. This allows us to compare the transition maps of Brouwer
flows belonging to the same class. The main result gives a sufficient condition for topo-
logically equivalent Brouwer flows to be topologically conjugate. The condition describes
the relations between the transition maps of Brouwer flows contained in the same class.
This result generalizes a theorem describing conjugacy classes of Reeb flows.

References

[1] T. Homma and H. Terasaka,On the structure of the plane translation of Brouwer,
Osaka Math. J. 5 (1953) 233–266.

[2] F. Le Roux,Classes de conjugaison des flots du plan topologiquementéquivalents au
flot de Reeb, C. R. Acad. Sci. Paris 328 (1999) 45–50.

[3] S. Matsumoto,A characterization of the standard Reeb flow, Hokkaido Math. J. 42
(2013) 69–80.

42



Recent advances in global stability of monotone maps:
application to population dynamics

RAFAEL LUÍS∗
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In a previous work [2, 3, 4], the authors established global stability for a certain class of
models. Based in these results, we introduce and develop in a forthcoming paper [1], a
new notion of normal monotonicity of higher dimensional models defined on Euclidean
spacesRk. Under certain conditions, we determine the global stability of normally mono-
tone maps, i.e., if the map has a unique interior fixed point, then it must be globally
asymptotically stable.

In this talk we will present the main results of our work and show the effectiveness of
our tools providing detailed proofs of the global stability of two important competition
models in population dynamics: the Leslie-Gower model and the Ricker competition
model.
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In this work, we propose and study discrete fractional Cucker–Smale optimal control
problem with Grunwald–Letnikov derivatives defined in the sense of Caputo. Necessary
conditions of optimality are given and the numerical treatment to some particular prob-
lems is proposed.

References

[1] N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres,Necessary optimality condi-
tions for fractional difference problems of the calculus of variations, Discrete Contin.
Dyn. Syst. 29 (2011) 417–437.

[2] N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres,Discrete-time fractional vari-
ational problems, Signal Processing, vol. 91 (2011) 513–524.

Research supported by Polish founds of National Science Center, granted on the basis of decision
DEC-2014/15/B/ST7/05270.

44



Fractional discrete-time of Hegselmann–Krause’s type
consensus model

DOROTA MOZYRSKA∗

Bialystok University of Technology
15-351 Białystok, Poland
d.mozyrska@pb.edu.pl

MAŁGORZATA WYRWAS

Bialystok University of Technology
15-351 Białystok, Poland

m.wyrwas@pb.edu.pl

There has been an increasing interest in recent years in the analysis of multi–agent sys-
tems where agents interact accordingly to some local rules. Speaking about consensus we
need to imagine a group of individuals who need to act together as a team or committee.
An extensive analysis for the models introduced by Krause in [1] or sometimes referred to
as the Hegelsmann–Krause model were given in [2] and [3]. In investigations we use in-
teractions between opinions defined like in Hegselmann–Krause models but with included
memory by fractional–order operator on the left side. We use the Grünwald–Letnikov–
type difference operator. In the paper we investigate various models for the dynamics of
discrete-time fractional order opinions by analytical methods and by computer simula-
tions.
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We consider the following system of difference equations which describes state transition
of a set ofN binary variablesxi ∈ {0, 1}:

xi(t+ 1) = fi(x1(t), x2(t), . . . , xn(t)), (1)

where functionfi : {0, 1} → {0, 1} represents one of logical functions such as AND,
OR, XOR and NOT. Boolean network model (1) proposed by S.A. Kauffman in 1969
[1] was proposed to describe random dynamics of gene regulatory network as crude but
useful simplification of real gene regulatory network. Boolean network models have been
used to understand regulatory dynamics of transcription factors which activate or sup-
press expression of various genes [2]. It is known that gene expression pattern changes
when distinct cells are co-cultured, which could be typically observed for immune cells.
Although several patterns exhibited by a boolean network model such as cycling and
steady states qualitatively explain observable real patterns of gene expression dynamics,
expected dynamical patterns exhibited by a coupled state of two different cell types have
not been fully understood yet. In this talk, we consider a coupled boolean network sys-
tem to investigate the possibility of combinatorial emergence: an emergent dynamical
behavior that is given risen from coupling of two different dynamical systems. Potential
biological implications are further discussed based on numerical simulation results.
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We discuss stability of a logistic difference equation with multiple delays. Global stability
conditions have been studied in papers e.g. [1, 4, 5]. We review the studies and introduce
a new global stability condition obtained in [2]. We then visualize stability conditions in
a parameter space performing linearized stability analysis [3]. Examples that delay can
stabilize the equilibrium will be presented. A part of this talk is based on a collaboration
work with Prof. Emiko Ishiwata and Naoyuki Yatsuda.
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In set-theory, the notion of positive invariance is used to characterize the properties of
dynamical systems. A positive invariant set is defined as a collection of initial conditions
generating trajectories in forward time within the same set.

In this talk, set invariance properties for linear time-delay systems are addressed. More
precisely, the first goal is to review known necessary and/or sufficient conditions for the
existence of invariant sets with respect to dynamical systems described by linear discrete
time-delay difference equations (dDDEs) of the form:

x(k + 1) =
d∑

i=0

Aix(k − i) (1)

wherex(k) ∈ Rn is the state vector at the timek ∈ Z+, d ∈ Z+ is the maximalfixedtime-
delay, the matricesAi ∈ Rn×n, for i ∈ Z[0,d] and the initial conditions are considered to be
given byx(−i) = x−i ∈ Rn, for i ∈ Z[0,d]. Secondly, the construction of invariant sets in
the original state space, also calledD-invariant sets, by exploiting the forward mappings is
addressed. The notion ofD-invariance is appealing since it provides a region of attraction,
which is difficult to obtain for time-delay systems without taking into account the delayed
states in some appropriate extended state space model.

In this talk we will discuss recent results related to sufficient conditions for the exis-
tence of ellipsoidalD-contractive sets for dDDEs, and necessary and sufficient conditions
for the existence ofD-invariant sets with respect to linear time-varying dDDE stability.
Another interesting point is the clarification of the relationship between convexity (convex
hull operation) andD-invariance of linear dDDEs. In short, it is shown that the convex
hull of the union of two or moreD-invariant sets is not necessarilyD-invariant, while the
convex hull of a non-convexD-invariant set isD-invariant.
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In 1998, C. Alsina and R. Ger [1] investigated the Hyers-Ulam stability of the linear
differential equation

x′ = x, t ∈ I,

where the prime denotes the derivative with respect tot; I is a nonempty open interval
of R. To be precise, they proved that if a differentiable functionϕ : I → R satisfies
|ϕ′(t)− ϕ(t)| ≤ ε for all t ∈ I, then there exists a differentiable functionx : I → R such
thatx′(t) = x(t) and |ϕ(t) − x(t)| ≤ 3ε for all t ∈ I, whereε is a given non-negative
constant. When this fact is satisfied, we sayx′ = x has the “Hyers-Ulam stability”.
Moreover, we call the constant 3 “Hyers-Ulam stability constant (HUS constant)” for the
differential equationx′ = x.

In this talk, we consider the first-order linear difference equation

∆hx(t) = x(t), t ∈ hZ, (1)

where

∆hx(t) =
x(t+ h)− x(t)

h
, h > 0;

andhZ = {hk| k ∈ Z}. The aim of this talk is to clarify that difference equation (1) has
the Hyers-Ulam stability with HUS constant 3.
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In this talk, we first recall our previous result on the growth rates of positive solutions
of a sytem of difference equations [2]. Then we show how this discrete result can be
used to determine the growth rates of the positive solutions of a class of delay differential
equations.
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In this talk we consider the almost linear Volterra difference equation

∆x(n) = a(n)h(x(n)) +
n−1∑
k=0

c(n, k)g(x(k)) (1)

and obtain conditions under which all solutions are bounded, using Krasnoselskii’s fixed
point theorem. Also, we will display a Lyapunov functional that yields boundedness of
solutions and compare both methods through examples.
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Integral stability for dynamic systems on time scales

ANDREJSREINFELDS

Institute of Mathematics and Computer Science, University of Latvia
29 Raina bulv., R̄ıga LV-1459, Latvia

reinf@latnet.lv

We consider the dynamic system in a Banach space on unbounded above and below time
scales: {

x∆ = A(t)x+ f(t, x, y),

y∆ = B(t)y + g(t, x, y).
(1)

This system satisfies the conditions of integral separation with the separation constant
ν, the integral contraction with the integral contraction constantµ, nonlinear terms are
ε-Lipshitz, and the system has a trivial solution. We prove the theorem of asymptotic
phase. Using this result and the centre manifold theorem we reduce the investigation of
integral stability of the trivial solution of (1) to investigation of integral stability of the
trivial solution of the reduced dynamic system

x∆ = A(t)x+ f(t, x, u(t, x)).
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We consider the dynamic equation in a Banach space on unbounded above and below
time scalesT:

x∆ = A(t)x+ f(t, x), (1)

with rd-continuous, regressive right hand side, nonlinear term satisfy the Lipschitz con-
dition

|f(t, x)− f(t, x′)| ≤ ε(t)|x− x′|,

and the estimate
|f(t, 0)| ≤ N(t) < +∞.

whereN : T → R+ andε : T → R+ are integrable scalar functions. Using Green type
mapping [1] we find sufficient condition for the existence of bounded solution and in-
vestigate it’s properties. We give an example in the case of the nonuniform exponential
dichotomy.
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Basel, Berlin, 2001.

This work was partially supported by the grant Nr. 345/2012 of the Latvian Council of Science

53



Applications of non-autonomous discrete dynamical
systems into nonlinear consensus problems

MANSOORSABUROV

Department of Computational & Theoretical Sciences
International Islamic University Malaysia

Kuantan, 25200, Pahang, Malaysia
msaburov@gmail.com

Historically, an idea of reaching consensus through repeated averaging was introduced by
DeGroot (see [1, 3]) for a structuredtime-invariantand synchronous environment. Since
that time, the consensus which is the most ubiquitous phenomenon of multi-agent sys-
tems becomes popular in various scientific communities, such as biology, physics, con-
trol engineering and social science. Roughly speaking, a trajectory of a row-stochastic
matrix presents DeGroot’s model of the structuredtime-invariantsynchronous environ-
ment. In [2], Chatterjee and Seneta considered a generalization of DeGroot’s model for
the structuredtime-varyingsynchronous environment. A trajectory of a sequence of row-
stochastic matrices (a non-homogeneous Markov chain) presents the Chatterjee-Seneta
model of the structuredtime-varyingsynchronous environment.

In this paper, we shall considera nonlinear model of the structured time-varying
synchronous environmentwhich generalizes both DeGroot’s and the Chatterjee-Seneta
models. Namely, by means of multidimensional stochastic hypermatrices, we present an
opinion sharing dynamics of the multi-agent system as a trajectory of non-autonomous
polynomial stochastic operators (nonlinear Markov operators). We show that the multi-
agent system eventually reaches to a consensus under suitable conditions.
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On the Stability of an SIR epidemic discrete model
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A model for the spread of disease-causing is treated with some mathematical epidemic
discrete equation with a delay. In this talk, we consider the asymptotic stability of a
discrete SIR epidemic discrete model with a delay by applying the luxury Liapunov func-
tional.
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In this talk we consider initial value problems

x(n+ 1) = f(n, x(n)), x(n0) = x0

wherek ∈ Z+ = {0, 1, 2, · · · }, k ≥ 1, n0 ∈ Z+, n ∈ Z+, x0 ∈ Rk, x ∈ Rk andf(n, x)
is continuous inx ∈ Rk for eachn ∈ Z+ with a unique equilibrium pointxe = f(n, xe)
for n ∈ Z+. In the same way as in T. Yoshizawa [2] we give converse theorems in
case that the equilibriumxe of the above equation is globally asymptotic stability (see
definitions in [1]). And also their applications of the converse theorems are dealt with to
perturbed equations.
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Equations with five variables give the second Feigenbaum
constant
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Feigenbaum constant is an universal value between simple chaotic models and fractals
[1]. A series expansion for the constant is not known yet. It is just found in almost two
thousands digits in Briggs’ thesis [2].

An universal functiong(x) which is required for calculation of the constant, has fol-
lowing properties [3, 4],

1. g(x) is an even function.

2. g(αx)/α = g(g(x))

3. α = 1/g(1)

4. g(0) = 1

We propose the equations with five variables by linearizing above properties. These
equations may be calculated by some types of greedy algorithm, that is a set of difference
equations.
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In this talk, nonoscillation problem is dealt for the second-order linear differentce equation

cnxn+1 + cn−1xn−1 = bnxn,

where{bn} and{cn} are positive sequences. For all sufficiently largen ∈ N, the ratios
cn/cn−1 andcn−1/bn play an important role in the results obtained. To be precise, our
nonoscillation criteria are described in terms of the sequence

qn =
cn−1

bn

cn
bn+1

cn
cn−1

=
c2n

bnbn+1

.

These criteria are compared with those that have been reported in previous researches
by using some specific examples. Figures are attached to facilitate understanding of the
concrete examples.
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We consider a two-stage voluntary provision model where individuals in a family con-
tribute to a pure public good and/or a household public good, and an altruistic parent
makes a non-negative income transfer to his or her child. The subgame perfect equi-
librium derived in the model is analyzed using two evolutionary dynamics games (i.e.,
replicator dynamics and best response dynamics). As a result, the equilibria with ex-post
transfers and pre-committed transfers coexist, and are unstable in the settings of replica-
tor dynamics as well as best response dynamics, whereas the monomorphic states (i.e.,
all families undertake either ex-post or pre-committed transfers) are stable. An income
redistribution policy does not alter the real allocations in the settings of both evolutionary
dynamics games, because the resulting real allocations depend on only the total income
of society and not on the distribution of individual income.
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Recently the authors have been working on a comprehensive project examining the global
behavior of a family of systems of piecewise linear difference equations. In this pre-
sentation we will share the results from a specific system:xn+1 = |xn| − yn − 1 and
yn+1 = xn + |yn| − 1 where initial conditions(x0, y0) is such thatx0 is an arbitrary non-
negative real value, andy0 is an arbitrary real value. We will show that every solution of
this system is either one of two prime period-3 solutions, or one of two prime period-4
solutions or the unique equilibrium solution. We will also share the sufficient conditions
for the prime period-4 solutions.
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This talk is concerned with the stability of traveling wave fronts for delayed monostable
lattice differential equations given by

ẋj(t) = G(xj−n(t−τ−n), · · · , xj−1(t−τ−1), xj(t), xj+1(t−τ1), · · · , xj+n(t−τn)), (1)

wherej ∈ Z; the positive constantsτ±k for k = 1, · · · , n are discrete time delays and the
spatially independent nonlinearityG(u−n, · · · , u0, · · · , un) : R2n+1 → R is aC2 func-
tion. we study the stability of a traveling wave front by using comparison principles for the
Cauchy problem and initial-boundary value problem of the lattice differential equations,
respectively. We show that any solution of the Cauchy problem converges exponentially
to a traveling wave front provided the initial perturbation around the traveling wave front
is restricted in the weighted space whose asymptotic exponential rate at−∞ (in moving
coordinate) is greater than that of the traveling wave front.
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Regular iterations connected with an initial value
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Let f be an increasing homeomorphism of[0,∞) onto itself with no non-zero fixed point
such thatd := f ′(0) exists and0 < d < 1. Let U : N → C[0,∞) satisfy the difference
equationf ◦U(n+1) = U(n) ◦ f with the initial conditionU(0)(x) = αx, whereα > 0.
The purpose of this talk is a presentation of the properties of asymptotic solutions of the
above equation in a dependence on the parameterα, that is the properties of the limits

fα,∞(x) := lim inf
n→∞

f−n(α(fn(x)), fα,∞(x) := lim sup
n→∞

f−n(α(fn(x))

and
fα,∞(x) := fα,∞(x) = fα,∞(x),

if the last equality holds.
PutNa := {α > 0 : fα,∞(a) = fα,∞(a)}. We prove that for every (some)a > 0

setR+ \Na is at most countable and the mapα → fα,∞(a) is injective if and only if the
Schr̈oder equationσ(f(x)) = dσ(x) has a regularly varying solution. IfNx = R+ for an
x > 0 then the family{fα,∞, t > 0} stands a regular multiplicative iteration group, that is

fα,∞ ◦ fβ,∞ = fαβ,∞, α, β > 0

andfα,∞ are differentiable at zero. Moreover,fd,∞ = f andf ′
α,∞(0) = α for α > 0. If f

is of classC1 andf ′(x) = d + O(xµ) or f is convex or concave thenNx = R+. Several
others properties offα,∞ andfα,∞ will be presented.
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In this talk we discuss self-adjoint extensions of the minimal linear relation associated
with the (time reversed) discrete symplectic system

zk(λ) = Sk(λ) zk+1(λ), Sk(λ) := Sk + λVk, (Sλ)

whereλ ∈ C is the spectral parameter and the2n × 2n complex-valued matricesSk and
Vk are such that

S∗
k JSk = J , V∗

k JSk is Hermitian, V∗
k J Vk = 0, Ψk := JSk J V∗

k J ≥ 0 (1)

with the skew-symmetric2n × 2n matrix J :=
(

0 I
−I 0

)
, the superscript∗ denoting the

conjugate transpose, andk belonging to a discrete interval, which is finite or unbounded
above. Especially, we emphasize that the matrixSk is (conjugate) symplectic according
to the first identity in (1). The talk is based on a joint research with S. L. Clark, see [1, 2].
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Tempered exponential dichotomy describes nonuniform hyperbolicity for linear random
dynamical systems. In this talk, we present a result on the roughness of the tempered
exponential dichotomy. The result is given in Banach spaces without assuming the invert-
ibility and the integrability condition of the Multiplicative Ergodic Theorem. Moreover,
the approach we used gives an explicit estimate for perturbations and an explicit form for
the exponent and the bound of the tempered exponential dichotomy. This is a joint work
with Kening Lu and Weinian Zhang.
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The purpose of this talk is to introduce an analog and reveal the Lie-algebraic structure
symmetries [3] of the generalized Davey-Stewartson (GDS) system of equations [1, 2] in
a non-commutative setting [6]. In particular, we show that the symmetries in the non-
commutative case [4, 6] are related to two copies of the Poisson bracket continual Lie
algebra over a non-commutative field [5, 7]. Examples and further development is also
provided.
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