Oscillation criteria for second-order nonlinear difference equations of Euler type

FIRST-NAME LAST-NAME (AUTHOR 1)

Department of Mathematical Sciences, Osaka Prefecture University, Sakai 599-8531, Japan icdea2016@gmail.com

FIRST-NAME LAST-NAME (AUTHOR 2)

Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan icdea2016@atalacia.com

The purpose of this talk is to present a pair of an oscillation theorem and a nonoscillation theorem for the second-order nonlinear difference equation

$$\Delta^2 x(n) + \frac{1}{n(n+1)} f(x(n)) = 0, \tag{1}$$

where f(x) is continuous on \mathbb{R} and satisfies the signum condition xf(x) > 0 if $x \neq 0$. The obtained results are best possible in a certain sense. Proof is given by means of Riccati technique and phase plane analysis of a system. A discrete version of the Riemann-Weber generalization of the Euler-Cauchy differential equation plays an important role to prove our results.

References

- O. Došlý and N. Yamaoka, Oscillation constants for second-order ordinary differential equations related to elliptic equations with p-Laplacian, Nonlinear Anal. 113 (2015) 115–136.
- [2] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, 2nd ed., Harcourt/Academic Press, San Diego, 2001.
- [3] N. Yamaoka, Oscillation criteria for second-order nonlinear difference equations of *Euler type*, Adv. in Difference Equ. 2012, 2012:218, 14pp.